Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(Benzothiazol-2-yl)-3-(prop-2-ynyl)hex-5-yn-2-one

Yamna Baryala,^a Abdelfettah Zerzouf,^a Moussa Salem,^a El Mokhtar Essassi^b* and Lahcen El Ammari^c

^aLaboratoire de Chimie Organique et Etudes Physico-chimique, ENS Takaddoum, Rabat, Morocco, ^bLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences, Pharmacochimie, Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Battouta, BP 1014, Rabat, Morocco, and ^cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco

Correspondence e-mail: emessassi@yahoo.fr

Received 22 February 2010; accepted 11 March 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.128; data-to-parameter ratio = 21.5.

The title compound, $C_{16}H_{13}NOS$, was prepared by alkylation of 1-(benzothiazol-2-yl)propan-2-one with propargyl bromide. The asymmetric unit contains two molecules that are crystallographically independent but linked to each other by nonclassical $C-H\cdots O$ hydrogen bonds, building up a dimeric substructure. The benzothiazole rings are essentially planar with maximum deviations of 0.005 (1) and 0.007 (2) Å for the N atoms. Although the two molecules have similar bond distances and angles, they slightly differ in the orientation of the benzothiazole ring with respect to the two propargyl groups and the acetonyl unit . In the crystal, intermolecular $C-H\cdots O$ interactions link the dimeric subunits into a twodimensional array in the *bc* plane.

Related literature

For background to the applications of benzothiazoles in the chemical industry, see: Bradshaw *et al.* (2002); Delmas *et al.* (2002); Hutchinson *et al.* (2002). For the pharmacological activity of benzothiazole derivatives, see: Repiĉ *et al.* (2001); Schwartz *et al.* (1992).

Experimental

Crystal data C₁₆H₁₃NOS

 $M_r = 267.34$

Z = 8

Mo $K\alpha$ radiation

 $0.36 \times 0.30 \times 0.20 \text{ mm}$

8407 independent reflections

5449 reflections with $I > 2\sigma(I)$

 $\mu = 0.22 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.052$

Monoclinic, $P2_1/n$ a = 7.7913 (1) Å b = 30.2051 (6) Å c = 12.4437 (2) Å $\beta = 106.161$ (1)° V = 2812.74 (8) Å³

Data collection

Bruker X8 APEXII CCD area-	
detector diffractometer	
45783 measured reflections	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.045 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.128 & \text{independent and constrained} \\ S &= 1.01 & \text{refinement} \\ 8407 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.31 \text{ e } \text{ Å}^{-3} \\ 391 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.19 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C13H13 \cdotsO1^{i} \\ C14H14B \cdotsO2 \\ C27H27A \cdotsO1^{ii} \end{array}$	0.93 (3)	2.52 (3)	3.409 (3)	161 (2)
	0.97	2.39	3.302 (2)	155
	0.97	2.55	3.409 (2)	147

Symmetry codes: (i) -x + 2, -y, -z + 2; (ii) -x + 1, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2184).

References

- Bradshaw, T. D., Chua, M. S., Browne, H. L., Trapani, V., Sausville, E. A. & Stevens, M. F. G. (2002). BJC, 86, 1348–1354.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Delmas, F., Di Giorgio, C., Robin, M., Azas, N., Gasquet, M., Detang, C., Costa, M., Timon-David, P. & Galy, J.-P. (2002). Antimicrob. Agents Chemother. 46, 2588–2594.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Westwell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744–747.
- Repiĉ, O., Prasad, K. & Lee, G. T. (2001). Org. Process. Res. Dev. 5, 519-527.
- Schwartz, A., Madan, P. B., Mohacsi, E., O'Brien, J. P., Todaro, L. J. & Coffen, D. L. (1992). J. Org. Chem. 57, 851–856.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2010). E66, 0857 [doi:10.1107/S1600536810009293]

3-(Benzothiazol-2-yl)-3-(prop-2-ynyl)hex-5-yn-2-one

Y. Baryala, A. Zerzouf, M. Salem, E. M. Essassi and L. El Ammari

Comment

Benzothiazoles possess therapeutic value, are synthetic intermediates in the preparation of medicinal compounds and find numerous applications in chemical industry (Bradshaw *et al.* 2002, Hutchinson *et al.* 2002, Delmas *et al.* 2002). Benzothiazole nucleus is associated with several pharmacological activities such as antitumoral (Repiĉ *et al.* 2001) and antimicrobial (Schwartz, *et al.* 1992). An alkylating reaction with propargyl bromide of 1-(benzothiazol-2-yl)propan-2-one (I) leading to the title compound 3-(benzothiazol-2-yl)-3-prop-2-ynyl-hex-5-yn-2-one (II) was performed employing either phase transfer catalysis or classical reaction conditions in acetone with potassium carbonate as a base.

The plot of the two molecules bulding the asymmetric unit is shown in Fig. 1. Each molecule consists of a benzothiazole moiety linked to dipropargylacetonyl group. The benzothiazole rings are essentially planar with maximum deviations of 0.005 (1) Å and 0.007 (2) Å from N1 and N2 respectively. The difference between the molecules is observed in the orientation of the two propargyl and acetonyl groups in each molecule (Spek, 2009). The dihedral angles in the first molecule, between S1-N1-C7 and C11-C12-C13, C14-C15-C16, O1-C9-C10 are 18 (4), 82 (9) and 87.5 (2)°, respectively. In the second molecule, we have 63 (8), 75 (4) and 88.8 (2)° respectively, between S2-N2-C23 and C27-C29-C28, C30-C31-C32 and O2-C25-C26. The two molecules within the asymmetric unit are linked by C—H…O hydrogen bonds building up a dimeric substructure. These dimers are further linked to each other by C—H…O hydrogen bonds forming in to 2-D array in the *bc* plane (Table 1, Fig. 2).

Experimental

To a stirred solution containing 1 g (5.23 mmol) of 1-(benzothiazol-2-yl)propan -2-one (I), 1 g (7.43 mmol) of potassium carbonate and 20 mg of the catalyst benzyl triethylammonium bromide (BTBA) in 30 ml of dimethylformamide, was added in one portion 0.7 g (5.76 mmol) of propargyl bromide . The reaction mixture was stirred for 24 hours at room temperature. The mixture was extracted with dichloromethane (10 ml x 3). The organic layer was dried over Na₂SO₄ and evaporated to dryness *in vacuo* to get viscous liquid product, which was further precipitated after cooling. On recrystallization from ethanol brown single crystals of (II) (yield: 1.26 g; 90%; mp 110-112°C) were obtained.

Refinement

H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å for methyl groups and C—H = 0.93 Å for all other hydrogens with $U_{iso}(H) = 1.2 U_{eq}(aromatic, methine)$ or $U_{iso}(H) = 1.5 U_{eq}(methyl)$. All other H atoms were located from difference Fourier maps and refined without any distance restraints.

Figures

Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Fig. 2. : Partial packing view showing the intermolecular C–H…O interactions linking the molecules into a 2-D array in the *bc* plane.

3-(Benzothiazol-2-yl)-3-(prop-2-ynyl)hex-5-yn-2-one

C ₁₆ H ₁₃ NOS	Z = 8
$M_r = 267.34$	F(000) = 1120
Monoclinic, $P2_1/n$	$D_{\rm x} = 1.263 {\rm Mg m}^{-3}$
Hall symbol: -p 2yn	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 7.7913 (1) Å	$\theta = 7.0 - 30.3^{\circ}$
b = 30.2051 (6) Å	$\mu = 0.22 \text{ mm}^{-1}$
c = 12.4437 (2) Å	T = 298 K
$\beta = 106.161 \ (1)^{\circ}$	Parallelepiped, clear pale yellow
$V = 2812.74 (8) \text{ Å}^3$	$0.36 \times 0.30 \times 0.20 \text{ mm}$

Data collection

Bruker X8 APEX CCD area-detector diffractometer	5449 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.052$
graphite	$\theta_{\text{max}} = 30.3^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
ϕ and ω scans	$h = -11 \rightarrow 11$
45783 measured reflections	$k = -42 \rightarrow 42$
8407 independent reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.045$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

$wR(F^2) = 0.128$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.0611P)^2 + 0.4268P]$ where $P = (F_o^2 + 2F_c^2)/3$
8407 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
391 parameters	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \ e \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F 1		1.	1 .	• ,				. 1.	1 .	,	182	ζ.
Fractional	atomic	coordinates	and i	sotron	IC OF P	auivalent	' isotron	1C d1S	nlacement	narameters	IA^{-}	1
1 / 00011011011	aronne	coordinates	control t	sonop		9000000000000	isonop	ie ans	pracement	parameters	1.1	/

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.62822 (19)	0.02125 (4)	0.85422 (13)	0.0661 (4)
S1	0.45815 (6)	0.126638 (14)	0.65398 (3)	0.04635 (12)
N1	0.55435 (17)	0.17249 (4)	0.83678 (10)	0.0379 (3)
C1	0.4413 (2)	0.19924 (5)	0.75663 (12)	0.0360 (3)
C2	0.3957 (2)	0.24295 (6)	0.77253 (15)	0.0463 (4)
H2	0.440 (2)	0.2551 (6)	0.8419 (16)	0.045 (5)*
C3	0.2901 (2)	0.26604 (6)	0.68364 (16)	0.0514 (4)
Н3	0.260 (3)	0.2954 (7)	0.6956 (16)	0.059 (6)*
C4	0.2271 (3)	0.24671 (7)	0.57885 (16)	0.0541 (5)
H4	0.154 (3)	0.2633 (7)	0.5185 (17)	0.063 (6)*
C5	0.2673 (2)	0.20358 (7)	0.56119 (15)	0.0496 (4)
Н5	0.222 (3)	0.1904 (7)	0.4940 (17)	0.062 (6)*
C6	0.3754 (2)	0.17996 (5)	0.65053 (13)	0.0383 (3)
C7	0.5758 (2)	0.13457 (5)	0.79517 (12)	0.0357 (3)
C8	0.6974 (2)	0.09826 (5)	0.85737 (12)	0.0372 (3)
C9	0.5878 (2)	0.05786 (5)	0.87635 (13)	0.0435 (4)
C10	0.4340 (3)	0.06577 (7)	0.92442 (17)	0.0601 (5)
H10A	0.4657	0.0883	0.9808	0.090*
H10B	0.4062	0.0389	0.9571	0.090*
H10C	0.3317	0.0752	0.8661	0.090*
C11	0.8066 (2)	0.11589 (6)	0.97374 (13)	0.0442 (4)
H11A	0.8691	0.1427	0.9639	0.053*
H11B	0.7256	0.1232	1.0178	0.053*
C12	0.9358 (3)	0.08305 (6)	1.03360 (14)	0.0516 (4)
C13	1.0392 (4)	0.05574 (9)	1.07695 (19)	0.0747 (7)

H13	1.122 (4)	0.0344 (9)	1.112 (2)	0.099 (9)*
C14	0.8253 (2)	0.08345 (6)	0.78856 (14)	0.0453 (4)
H14A	0.9067	0.0612	0.8303	0.054*
H14B	0.7560	0.0701	0.7191	0.054*
C15	0.9280 (3)	0.12022 (7)	0.76328 (16)	0.0543 (5)
C16	1.0073 (3)	0.15030 (10)	0.7428 (2)	0.0793 (7)
H16	1.067 (4)	0.1724 (8)	0.724 (2)	0.088 (8)*
02	0.6762 (2)	0.05561 (5)	0.52220 (10)	0.0639 (4)
S2	0.55463 (6)	0.170295 (14)	0.37374 (3)	0.04545 (12)
N2	0.49980 (18)	0.12720 (4)	0.18749 (10)	0.0388 (3)
C17	0.4081 (2)	0.16709 (5)	0.16241 (13)	0.0391 (3)
C18	0.3085 (3)	0.18000 (7)	0.05589 (16)	0.0563 (5)
H18	0.299 (3)	0.1604 (7)	-0.0094 (19)	0.074 (7)*
C19	0.2278 (3)	0.22127 (8)	0.04356 (19)	0.0658 (6)
H19	0.162 (3)	0.2295 (7)	-0.0307 (18)	0.072 (6)*
C20	0.2450 (3)	0.24907 (7)	0.1344 (2)	0.0621 (5)
H20	0.183 (3)	0.2782 (7)	0.1227 (18)	0.072 (6)*
C21	0.3403 (3)	0.23676 (6)	0.24036 (18)	0.0540 (5)
H21	0.353 (3)	0.2552 (7)	0.3008 (17)	0.068 (6)*
C22	0.4227 (2)	0.19521 (5)	0.25372 (13)	0.0395 (3)
C23	0.5807 (2)	0.12458 (5)	0.29265 (12)	0.0338 (3)
C24	0.6913 (2)	0.08534 (5)	0.34795 (12)	0.0356 (3)
C25	0.5961 (2)	0.06227 (5)	0.42620 (13)	0.0434 (4)
C26	0.4072 (3)	0.04820 (7)	0.37852 (18)	0.0634 (5)
H26A	0.3602	0.0613	0.3059	0.095*
H26B	0.3376	0.0577	0.4269	0.095*
H26C	0.4018	0.0165	0.3719	0.095*
C27	0.7065 (2)	0.05229 (5)	0.25588 (12)	0.0395 (3)
H27A	0.5876	0.0431	0.2137	0.047*
H27B	0.7615	0.0671	0.2047	0.047*
C28	0.8117 (3)	0.01322 (7)	0.30197 (15)	0.0583 (5)
C29	0.8994 (5)	-0.01727 (10)	0.3395 (2)	0.1035 (11)
H29	0.970 (4)	-0.0425 (11)	0.363 (3)	0.128 (11)*
C30	0.8784 (2)	0.10077 (6)	0.41712 (14)	0.0499 (4)
H30A	0.8661	0.1203	0.4765	0.060*
H30B	0.9477	0.0752	0.4515	0.060*
C31	0.9732 (2)	0.12394 (6)	0.34835 (17)	0.0527 (4)
C32	1.0447 (3)	0.14150 (8)	0.2886 (2)	0.0713 (6)
H32	1.099 (4)	0.1568 (10)	0.237 (3)	0.123 (11)*
H32	1.099 (4)	0.1568 (10)	0.237 (3)	0.123
Atomic displa	cement parameters (\hat{A}^2)	²)		

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0675 (9)	0.0358 (7)	0.0939 (11)	-0.0001 (6)	0.0208 (8)	-0.0075 (7)
S1	0.0574 (3)	0.0398 (2)	0.0367 (2)	0.00420 (18)	0.00457 (18)	-0.00849 (16)
N1	0.0421 (7)	0.0375 (7)	0.0339 (6)	0.0034 (5)	0.0102 (5)	-0.0030 (5)
C1	0.0343 (8)	0.0377 (8)	0.0362 (7)	0.0020 (6)	0.0103 (6)	-0.0021 (6)
C2	0.0481 (10)	0.0430 (9)	0.0454 (9)	0.0083 (7)	0.0092 (8)	-0.0074 (7)

C3	0.0486 (10)	0.0437 (10)	0.0583 (11)	0.0160 (8)	0.0089 (8)	-0.0015 (8)
C4	0.0479 (10)	0.0568 (12)	0.0509 (10)	0.0143 (9)	0.0029 (8)	0.0066 (8)
C5	0.0469 (10)	0.0575 (11)	0.0387 (9)	0.0050 (8)	0.0022 (8)	-0.0022 (8)
C6	0.0355 (8)	0.0411 (8)	0.0380 (7)	-0.0008 (6)	0.0095 (6)	-0.0030 (6)
C7	0.0399 (8)	0.0350 (8)	0.0320 (7)	-0.0012 (6)	0.0097 (6)	-0.0025 (6)
C8	0.0434 (8)	0.0330 (8)	0.0349 (7)	0.0029 (6)	0.0102 (6)	-0.0030 (6)
C9	0.0509 (10)	0.0360 (9)	0.0395 (8)	-0.0005 (7)	0.0059 (7)	0.0001 (6)
C10	0.0698 (13)	0.0564 (12)	0.0613 (11)	-0.0093 (10)	0.0302 (10)	0.0011 (9)
C11	0.0499 (10)	0.0423 (9)	0.0370 (8)	0.0031 (7)	0.0065 (7)	-0.0044 (6)
C12	0.0552 (11)	0.0539 (11)	0.0412 (9)	0.0043 (9)	0.0060 (8)	-0.0048 (8)
C13	0.0797 (16)	0.0767 (16)	0.0555 (12)	0.0263 (13)	-0.0016 (11)	0.0013 (11)
C14	0.0508 (10)	0.0452 (9)	0.0405 (8)	0.0097 (7)	0.0139 (7)	-0.0015 (7)
C15	0.0501 (10)	0.0620 (12)	0.0560 (10)	0.0085 (9)	0.0234 (9)	0.0035 (9)
C16	0.0670 (15)	0.0808 (18)	0.1034 (19)	-0.0018 (13)	0.0460 (15)	0.0091 (14)
O2	0.0870 (10)	0.0675 (9)	0.0372 (6)	0.0073 (8)	0.0172 (7)	0.0111 (6)
S2	0.0591 (3)	0.0369 (2)	0.0393 (2)	0.00400 (18)	0.01197 (19)	-0.00679 (16)
N2	0.0446 (7)	0.0345 (7)	0.0348 (6)	0.0052 (6)	0.0072 (6)	0.0006 (5)
C17	0.0383 (8)	0.0361 (8)	0.0431 (8)	0.0041 (6)	0.0117 (7)	0.0047 (6)
C18	0.0616 (12)	0.0554 (11)	0.0476 (10)	0.0185 (9)	0.0080 (9)	0.0062 (8)
C19	0.0651 (13)	0.0678 (14)	0.0622 (12)	0.0292 (11)	0.0138 (11)	0.0211 (11)
C20	0.0615 (12)	0.0481 (11)	0.0815 (15)	0.0242 (10)	0.0280 (11)	0.0162 (10)
C21	0.0571 (11)	0.0391 (10)	0.0713 (13)	0.0095 (8)	0.0272 (10)	0.0009 (9)
C22	0.0392 (8)	0.0334 (8)	0.0488 (9)	0.0008 (6)	0.0170 (7)	0.0020 (6)
C23	0.0384 (8)	0.0288 (7)	0.0345 (7)	-0.0020 (6)	0.0107 (6)	-0.0022 (6)
C24	0.0416 (8)	0.0313 (7)	0.0311 (7)	0.0030 (6)	0.0056 (6)	0.0003 (5)
C25	0.0624 (11)	0.0311 (8)	0.0387 (8)	0.0070 (7)	0.0171 (8)	0.0026 (6)
C26	0.0670 (13)	0.0606 (13)	0.0681 (13)	-0.0082 (10)	0.0277 (11)	0.0132 (10)
C27	0.0472 (9)	0.0354 (8)	0.0338 (7)	0.0058 (7)	0.0080 (7)	-0.0016 (6)
C28	0.0786 (14)	0.0538 (11)	0.0425 (9)	0.0245 (10)	0.0166 (9)	0.0008 (8)
C29	0.158 (3)	0.093 (2)	0.0589 (14)	0.080 (2)	0.0293 (16)	0.0151 (13)
C30	0.0471 (10)	0.0504 (10)	0.0426 (9)	0.0029 (8)	-0.0030 (7)	-0.0021 (7)
C31	0.0404 (9)	0.0481 (10)	0.0633 (11)	-0.0031 (8)	0.0041 (8)	-0.0116 (9)
C32	0.0557 (13)	0.0712 (15)	0.0896 (17)	-0.0181 (11)	0.0245 (12)	-0.0116 (13)

Geometric parameters (Å, °)

O1—C9	1.203 (2)	O2—C25	1.201 (2)
S1—C6	1.7308 (17)	S2—C22	1.7319 (17)
S1—C7	1.7573 (16)	S2—C23	1.7549 (15)
N1—C7	1.2869 (19)	N2—C23	1.2873 (19)
N1—C1	1.3909 (19)	N2—C17	1.3912 (19)
C1—C2	1.396 (2)	C17—C18	1.393 (2)
C1—C6	1.403 (2)	C17—C22	1.398 (2)
C2—C3	1.371 (2)	C18—C19	1.385 (3)
С2—Н2	0.912 (18)	C18—H18	0.99 (2)
C3—C4	1.388 (3)	C19—C20	1.384 (3)
С3—Н3	0.94 (2)	С19—Н19	0.96 (2)
C4—C5	1.372 (3)	C20—C21	1.372 (3)
C4—H4	0.95 (2)	С20—Н20	1.00 (2)

C5—C6	1.390 (2)	C21—C22	1.398 (2)
С5—Н5	0.91 (2)	C21—H21	0.92 (2)
С7—С8	1.514 (2)	C23—C24	1.514 (2)
C8—C9	1.545 (2)	C24—C30	1.544 (2)
C8—C14	1.549 (2)	C24—C25	1.544 (2)
C8—C11	1.555 (2)	C24—C27	1.549 (2)
C9—C10	1.500 (3)	C25—C26	1.488 (3)
C10—H10A	0.9600	C26—H26A	0.9600
C10—H10B	0.9600	C26—H26B	0.9600
C10—H10C	0.9600	С26—Н26С	0.9600
C11—C12	1.461 (2)	C27—C28	1.460 (2)
C11—H11A	0.9700	C27—H27A	0.9700
C11—H11B	0.9700	С27—Н27В	0.9700
C12—C13	1.174 (3)	C28—C29	1.164 (3)
С13—Н13	0.93 (3)	С29—Н29	0.94 (3)
C14—C15	1.454 (3)	C30—C31	1.456 (3)
C14—H14A	0.9700	C30—H30A	0.9700
C14—H14B	0.9700	C30—H30B	0.9700
C15—C16	1.166 (3)	C31—C32	1.173 (3)
C16—H16	0.88 (3)	С32—Н32	0.98 (3)
C6—S1—C7	89.14 (7)	C22—S2—C23	88.96 (7)
C7—N1—C1	110.83 (13)	C23—N2—C17	110.90 (13)
N1—C1—C2	125.68 (14)	N2-C17-C18	124.86 (15)
N1—C1—C6	115.25 (14)	N2—C17—C22	115.06 (14)
C2—C1—C6	119.03 (15)	C18—C17—C22	120.08 (15)
C3—C2—C1	119.07 (16)	C19—C18—C17	118.23 (19)
С3—С2—Н2	122.9 (11)	C19—C18—H18	121.3 (13)
С1—С2—Н2	118.0 (11)	C17—C18—H18	120.4 (12)
C2—C3—C4	121.33 (17)	C20—C19—C18	121.16 (19)
С2—С3—Н3	118.2 (12)	С20—С19—Н19	122.3 (13)
С4—С3—Н3	120.5 (12)	С18—С19—Н19	116.5 (13)
C5—C4—C3	120.89 (17)	C21—C20—C19	121.61 (18)
С5—С4—Н4	119.2 (12)	C21—C20—H20	119.4 (13)
C3—C4—H4	119.9 (12)	С19—С20—Н20	119.0 (13)
C4—C5—C6	118.28 (17)	C20—C21—C22	117.70 (19)
С4—С5—Н5	121.3 (13)	C20—C21—H21	121.9 (14)
С6—С5—Н5	120.4 (13)	C22—C21—H21	120.4 (14)
C5—C6—C1	121.39 (15)	C17—C22—C21	121.20 (16)
C5—C6—S1	129.48 (13)	C17—C22—S2	109.35 (11)
C1—C6—S1	109.07 (12)	C21—C22—S2	129.44 (14)
N1—C7—C8	124.89 (13)	N2-C23-C24	124.47 (13)
N1—C7—S1	115.70 (12)	N2—C23—S2	115.73 (11)
C8—C7—S1	119.37 (11)	C24—C23—S2	119.80 (10)
C7—C8—C9	110.88 (13)	C23—C24—C30	110.29 (13)
C7—C8—C14	109.50 (12)	C23—C24—C25	109.11 (12)
C9—C8—C14	108.92 (13)	C30—C24—C25	109.21 (13)
C7—C8—C11	109.28 (12)	C23—C24—C27	108.63 (12)
C9—C8—C11	108.09 (13)	C30—C24—C27	110.63 (13)
C14—C8—C11	110.16 (13)	C25—C24—C27	108.93 (12)

O1—C9—C10	121.82 (17)	O2—C25—C26	122.09 (17)
01—C9—C8	120.00 (16)	O2—C25—C24	119.67 (17)
C10C9C8	118.18 (14)	C26—C25—C24	118.22 (14)
C9—C10—H10A	109.5	С25—С26—Н26А	109.5
C9—C10—H10B	109.5	С25—С26—Н26В	109.5
H10A-C10-H10B	109.5	H26A—C26—H26B	109.5
C9—C10—H10C	109.5	С25—С26—Н26С	109.5
H10A-C10-H10C	109.5	H26A—C26—H26C	109.5
H10B-C10-H10C	109.5	H26B—C26—H26C	109.5
C12—C11—C8	111.27 (14)	C28—C27—C24	112.37 (13)
C12—C11—H11A	109.4	С28—С27—Н27А	109.1
C8—C11—H11A	109.4	С24—С27—Н27А	109.1
C12—C11—H11B	109.4	С28—С27—Н27В	109.1
C8—C11—H11B	109.4	С24—С27—Н27В	109.1
H11A—C11—H11B	108.0	H27A—C27—H27B	107.9
C13—C12—C11	176.8 (2)	C29—C28—C27	178.3 (3)
C12—C13—H13	179.2 (18)	С28—С29—Н29	174.5 (19)
C15—C14—C8	112.10 (14)	C31—C30—C24	111.84 (14)
C15—C14—H14A	109.2	С31—С30—Н30А	109.2
C8—C14—H14A	109.2	С24—С30—Н30А	109.2
C15-C14-H14B	109.2	С31—С30—Н30В	109.2
C8—C14—H14B	109.2	С24—С30—Н30В	109.2
H14A—C14—H14B	107.9	H30A—C30—H30B	107.9
C16—C15—C14	178.6 (2)	C32—C31—C30	176.8 (2)
C15—C16—H16	177.2 (18)	C31—C32—H32	177.4 (19)
C7—N1—C1—C2	-177.23 (16)	C23—N2—C17—C18	179.57 (17)
C7—N1—C1—C6	0.27 (19)	C23—N2—C17—C22	0.14 (19)
N1—C1—C2—C3	176.44 (16)	N2-C17-C18-C19	-178.52 (18)
C6—C1—C2—C3	-1.0 (3)	C22-C17-C18-C19	0.9 (3)
C1—C2—C3—C4	0.4 (3)	C17—C18—C19—C20	-0.1 (3)
C2—C3—C4—C5	0.7 (3)	C18-C19-C20-C21	-0.9 (4)
C3—C4—C5—C6	-1.1 (3)	C19—C20—C21—C22	1.0 (3)
C4—C5—C6—C1	0.5 (3)	N2-C17-C22-C21	178.71 (15)
C4—C5—C6—S1	-176.61 (15)	C18—C17—C22—C21	-0.7 (3)
N1—C1—C6—C5	-177.15 (15)	N2-C17-C22-S2	-0.31 (17)
C2—C1—C6—C5	0.5 (2)	C18—C17—C22—S2	-179.77 (14)
N1—C1—C6—S1	0.50 (17)	C20-C21-C22-C17	-0.2 (3)
C2-C1-C6-S1	178.18 (13)	C20—C21—C22—S2	178.59 (15)
C7—S1—C6—C5	176.60 (17)	C23—S2—C22—C17	0.29 (12)
C7—S1—C6—C1	-0.80 (12)	C23—S2—C22—C21	-178.63 (16)
C1—N1—C7—C8	176.84 (13)	C17—N2—C23—C24	179.44 (13)
C1—N1—C7—S1	-0.94 (17)	C17—N2—C23—S2	0.10 (17)
C6—S1—C7—N1	1.05 (13)	C22-S2-C23-N2	-0.24 (13)
C6—S1—C7—C8	-176.85 (12)	C22—S2—C23—C24	-179.61 (12)
N1—C7—C8—C9	112.90 (17)	N2-C23-C24-C30	127.53 (16)
S1—C7—C8—C9	-69.40 (15)	S2-C23-C24-C30	-53.15 (16)
N1—C7—C8—C14	-126.88 (16)	N2—C23—C24—C25	-112.51 (16)
S1-C7-C8-C14	50.82 (16)	S2—C23—C24—C25	66.81 (15)
N1—C7—C8—C11	-6.1 (2)	N2-C23-C24-C27	6.1 (2)

S1-C7-C8-C11	171.56 (11)	S2—C23—C24—C27	-174.56 (11)
C7—C8—C9—O1	131.63 (17)	C23—C24—C25—O2	-126.98 (16)
C14—C8—C9—O1	11.1 (2)	C30—C24—C25—O2	-6.3 (2)
C11—C8—C9—O1	-108.61 (18)	C27—C24—C25—O2	114.58 (17)
C7—C8—C9—C10	-49.44 (19)	C23—C24—C25—C26	54.16 (19)
C14—C8—C9—C10	-170.00 (15)	C30-C24-C25-C26	174.79 (15)
C11—C8—C9—C10	70.32 (18)	C27—C24—C25—C26	-64.29 (19)
C7—C8—C11—C12	-175.71 (14)	C23—C24—C27—C28	179.97 (15)
C9—C8—C11—C12	63.53 (18)	C30-C24-C27-C28	58.76 (19)
C14—C8—C11—C12	-55.37 (18)	C25—C24—C27—C28	-61.29 (19)
C8—C11—C12—C13	22 (4)	C24—C27—C28—C29	-68 (7)
C7—C8—C14—C15	56.19 (18)	C23—C24—C30—C31	-58.50 (18)
C9—C8—C14—C15	177.59 (14)	C25-C24-C30-C31	-178.41 (14)
C11—C8—C14—C15	-64.02 (18)	C27—C24—C30—C31	61.71 (18)
C8—C14—C15—C16	-35 (10)	C24—C30—C31—C32	-26 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C13—H13O1 ⁱ	0.93 (3)	2.52 (3)	3.409 (3)	161 (2)
C14—H14BO2	0.97	2.39	3.302 (2)	155
C27—H27A01 ⁱⁱ	0.97	2.55	3.409 (2)	147

Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+1, -y, -z+1.

Fig. 1

Fig. 2

